Debugging of Markov Decision Processes (MDPs) Models

نویسنده

  • Hichem Debbi
چکیده

In model checking, a counterexample is considered as a valuable tool for debugging. In Probabilistic Model Checking (PMC), counterexample generation has a quantitative aspect. The counterexample in PMC is a set of paths in which a path formula holds, and their accumulative probability mass violates the probability threshold. However, understanding the counterexample is not an easy task. In this paper we address the task of counterexample analysis for Markov Decision Processes (MDPs). We propose an aided-diagnostic method for probabilistic counterexamples based on the notions of causality, responsibility and blame. Given a counterexample for a Probabilistic CTL (PCTL) formula that does not hold over an MDP model, this method guides the user to the most relevant parts of the model that led to the violation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated decomposition techniques for large discounted Markov decision processes

Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...

متن کامل

Counterexamples for Model Checking of Markov Decision Processes

The debugging of stochastic system models relies on the availability of diagnostic information. Classic probabilistic model checkers, which are based on iterated numerical probability matrix operations, do not provide such diagnostic information. In precursory work, we have devised counterexample generation methods for continuousand discrete-time Markov Chains based on heuristics guided explici...

متن کامل

Markov decision processes: a tool for sequential decision making under uncertainty.

We provide a tutorial on the construction and evaluation of Markov decision processes (MDPs), which are powerful analytical tools used for sequential decision making under uncertainty that have been widely used in many industrial and manufacturing applications but are underutilized in medical decision making (MDM). We demonstrate the use of an MDP to solve a sequential clinical treatment proble...

متن کامل

Ordinal Decision Models for Markov Decision Processes

Setting the values of rewards in Markov decision processes (MDP) may be a difficult task. In this paper, we consider two ordinal decision models for MDPs where only an order is known over rewards. The first one, which has been proposed recently in MDPs [23], defines preferences with respect to a reference point. The second model, which can been viewed as the dual approach of the first one, is b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016